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ABSTRACT: A combination of experimental spectroscopies (UV−vis and Fourier-
transform infrared) and computational modeling was used to investigate the
coordination of small ligands (aminopropanol and propanediol) to Pd species during
the metal nanoparticle formation process. Differences emerged between O-
(propanediol) and N-containing (aminopropanol) ligands. In particular, a strong
interaction between the NH amino group and Pd2+ ions could be inferred on the basis
of spectroscopic evidences, which was corroborated by theoretical simulations, which
confirmed the preferential coordination of aminopropanol through the NH group. This
interaction seems to potentially cause the aminopropanol ligand to control the particle
shape through a selective blocking of Pd(100) facets, which promote the growth on the
Pd(111) facets.

1. INTRODUCTION

In the last decades, metal nanoparticles (MNPs) have been
used increasingly as key components for applications in several
fields such as energy conversion and storage, biomedicine and
life science, electronics, information technology, and catalysis,
thanks to their unique and fascinating properties.1−4 Most of
the physicochemical properties of MNPs (e.g., optical,
catalytic, magnetic, and electronic properties) are highly
dependent on a set of structural and morphological parameters,
including composition, particle size, shape and exposure of
facets, crystal structure, surface modification, and environment.
Despite this strong relationship between their structure and
function, the practical applications and the performances of
MNPs are still limited by the lack of a clear predictability of the
synthesis outcome in terms of size and morphological
dispersion.5,6

Indeed, despite extensive studies and significant advances,
the development of synthetic routes able to produce MNPs
with an enhanced degree of compositional, dimensional,
morphological, and structural control still remains an open
challenge. This difficulty arises, in part, from the significant
number of factors affecting solution-based methods which
need to be considered and tuned in order to achieve the
rational design of size- and shape-controlled MNPs syntheses.
The metal reduction potential, the nature and concentration of
precursors, the reducing agent, the solvent, the temperature,
and the mass transfer phenomena have a considerable impact
on the mechanisms of nucleation and growth.7−10 In addition,
capping agents are commonly used in solution-phase synthesis
to stabilize MNPs and to prevent their aggregation. The

capping agents are often selected from various types of
molecules, such as thiols, amines, halides, carboxylic acids,
phosphines, polymers, and surfactants.11−13 Capping agents
can play multiple roles including providing colloidal stabiliza-
tion and acting as structure-directing agents.7,11,14−19 Fur-
thermore, as with conventional ligands, the capping agents can
coordinate metal centers during different stages from metal
precursors to MNPs. During the synthesis process, the metal
precursor is decomposed and reduced into metal atoms, which
then aggregate and evolve toward the formation of clusters and
then nanoparticles (NPs). The role of the capping agents in
the overall thermodynamics and kinetics of the nucleation-
growth processes derives from the different interactions with
metal ions, MNPs, and several intermediates, as shown by
many experimental studies.6,7,11,12,17,20,21 The concentration
ratio of the capping agent and metal has been demonstrated to
affect the final sizes of alkanethiolate-capped Au NPs.22 The
interaction strength influences the particle size as reported by
Karim et al. for Pd NPs synthesized in the presence of
oleylamine (weak capping agent) or trioctylphosphine (TOP)
(strong capping agent).23 The capping agent can also induce
significant variations in the electrochemical reduction potential
of metal ions, as suggested by the studies by Biacchi and
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Schaak concerning the effect of different polyols on the
reduction of Rh salts.24

More recently, by combining in situ small-angle X-ray
scattering (SAXS) and kinetic modeling, Mozaffari et al.
investigated in detail the mechanisms of Pd NPs nucleation
and growth.25 The study demonstrated that in different
solvents (pyridine and toluene), the capping agents, acetate,
and TOP, can exert a kinetic control on both the nucleation
and growth rates, which was achieved by examining the
concentration of the kinetically active metal precursor and the
number of free surface sites on the respective NPs’ facets.
The capping agent not only influences the formation of

MNPs but can also irreversibly adsorb onto their surfaces,
affecting their performance and utility, which can drastically
reduce the activity of heterogeneous catalysts.26−28 It has been
demonstrated that adsorbed capping agent molecules create an
interphase, where diffusional, steric, and electronic effects can
control and modify the overall activity and selectivity of
catalytic reactions.27 The reaction pathway is often governed
by the preferential interactions between capping agent
molecules and specific active sites (facets, edges, corners, and
defects) on the MNP surfaces.28

For these reasons, a significant amount of research has been
devoted recently to investigate the connection between metal−
capping agent interactions and the formation mechanisms of
MNPs in solution, as well as the nature and role of the local
ligand environment of metal species in solution. Several studies
have been reported using advanced characterization techniques
(e.g., SAXS, liquid cell transmission electron microscopy, and
extended X-ray absorption fine structure) to provide a
molecular-level understanding of the roles of capping agents
during the formation of MNPs.7,11,17,19−21,29−43 Here, we
employ a combination of UV−visible (UV−vis) and Fourier
transform infrared (FT-IR) spectroscopies and density func-
tional theory (DFT) modeling to investigate the coordination
of small ligands (diols and amino alcohols) to Pd2+ ions and Pd
NPs. The complementary use of conventional spectroscopic
techniques and theoretical modeling has already been
demonstrated to be a powerful tool in investigating metal−
ligand interactions in Au and Ag NPs.34−36,40,44 The pH
dependence of interaction strength and conformation of
thiolate and thione molecules at the surface of Au NPs has
been studied by means of surface-enhanced Raman spectros-
copy (SERS) combined with DFT modeling by Ansar et al.36

The synthesis of amidine-stabilized Ag NPs via hydrogenolysis
of silver amidinate in the presence of hexadecylamine was
explored by Cure et al. through nuclear magnetic resonance
and SERS spectroscopies in combination with DFT
simulations devoted to unraveling the coordination of ligands
to Ag NPs.40 Singh et al. monitored the synthesis of curcumin-
capped Au NPs by in situ UV−vis Spectroscopy, and
experimental results were correlated with DFT calculations
exploring the formation of several complexes of curcumin with
Au3+ ions in various conformational isomeric forms.35 In this
study, we focused on Pd NPs, which were selected as a model
metal system because of their prevalence and relevance to
heterogenous catalysis. DFT-derived spectra were used to
interpret the experimental results in detail. Our results
illustrate the DFT-assisted spectroscopic approach to describe
the ligand coordination to NP’s facets. The species present in
the experimental reaction solutions have been examined
through comparison of experimental with computed spectra.

2. EXPERIMENTAL SECTION

2.1. Synthesis of Pd NPs. Solid Na2PdCl4 (0.094 mmol of
Pd) and aminopropanol or propanediol water solution (1 wt
%) (Pd/capping agent 1:100 weight ratio) were added to 100
mL of H2O. After 3 min, NaBH4 (Pd/NaBH4 = 1/8 mol/mol)
solution was added to the yellow-brown solution under
vigorous magnetic stirring. A brown Pd(0) sol was immediately
formed.

2.2. Spectroscopic Studies. UV−vis spectra of sols were
recorded using a PerkinElmer λ25 spectrophotometer in H2O
between 190 and 1200 nm using a quartz cuvette. The samples
were loaded into a rectangular quartz cuvette of 1 cm width
and 3 cm height. The sample measurement was made with
respect to a reference scan of the solvent (i.e., distilled water).
Spectra were recorded after 10, 60, and 300 s from the addition
of the capping agent.
FT-IR experiments were performed with cells allowing

spectrum scanning on the liquid samples at room temperature.
The FT-IR spectra were recorded using a PerkinElmer 2000
spectrometer (equipped with a cryogenic HgCdTe (MCT)
detector). The spectra were acquired in the 4000−1000 cm−1

range with a 2 cm−1 resolution. To collect the FT-IR spectra of
our aqueous solutions, we employed a commercial demount-
able transmission cell equipped with CaF2 windows (shown in
Figure SI-1 of the Supporting Information). The solution is
dropped onto a CaF2 window and sandwiched with another
equal window such that no gas bubbles are trapped. This
procedure implies that the amount of sample is very low, and
the contribution of the solvent is negligible under these
conditions.
The measured solution sample forms a thin liquid film

between the two windows, which is typically less than 0.01 mm
thick. It is not possible to measure the optical path, being that
of the liquid film. Indeed, as the thickness is not constant from
measurement to measurement, this type of cell is unsuitable for
quantitative analysis.

2.3. Computational Details. This project uses DFT as
incorporated within the ORCA45 and VASP (Vienna Ab initio
Software Package)46−49 simulation codes to model precursor
molecules and experimentally formed NPs, respectively, the
latter of which is modeled as extended periodic surfaces. The
Perdew−Burke−Ernzerhof (PBE) exchange−correlation func-
tional50,51 was employed to account for the exchange and
correlation effects on valence electrons with the projector
augmented-wave method used to represent atomic core
states.52,53 To ensure consistency between periodic and
nonperiodic simulations, extended tests were carried out
using PBE and Becke−Perdew-86 functional (BP86). These
consistency tests have shown the PBE functional to be a
reasonable compromise between cost and accuracy for the
second-row transition metals modeled using both periodic and
atom-centered DFT methodologies.54 Dispersion effects were
included in both atom-centered and plane-wave models using
Grimme’s empirical DFT-D3 model.55 For nonperiodic, atom-
centered models, DFT-D3BJ (DFT-D3 with Becke−Johnson
damping) was used to prevent artificial short-range repulsive
interactions.55−58

Dipole correction along the Z-direction of the periodic slab
model was applied when necessary. A Monkhorst−Pack grid
was used to sample the Brillouin zone.59 For optimization
calculations, the number of k-points used was 7 × 7 × 7 for the
optimization of the fcc unit cell bulk structure, and 7 × 7 × 1
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for the surfaces. For the adsorption calculations on the (111)
surface, a 5 atomic layer-thick slab with a p(4 × 4) surface
supercell (80 atoms) was employed. For the (100) surface, a
c(3 × 3) surface slab was constructed, again 5 layers thick (90
atoms). During optimization calculations, the top two layers of
the slabs were relaxed and the lower 3 layers fixed at their
optimized bulk positions. A 3 × 3 × 1 k-points sampling was
used for all surface calculations. The periodically repeated slabs
were separated by a 20 Å vacuum layer along the Z direction,
which is enough to avoid any spurious interaction with
periodically replicated images. A kinetic energy of the plane
waves was set to 400 eV ensuring no Pulay stress. The
convergence criterion was set such that the calculations
converge when the forces are less than 0.02 eV Å−1 for
adsorption calculations, 0.001 eV Å−1 for the bulk, and 0.01 eV
Å−1 for surface optimization calculations. The adsorption
energy was computed using eq 1.

E E E E( )ads ad sl sl ad= − −+ (1)

where Ead+sl is the energy of the adsorbate adsorbed on the
slab, Esl is the energy of the naked slab, and Ead is the energy of
the adsorbate in the gas phase, that is, in a cell large enough to
avoid intermolecular interactions.
The ORCA implementation of Karlsruhe quadruple zeta

with valence and polarization function basis set (def2-QZVP),
the auxiliary Weigend basis set (def2/J), and Stuttgart−
Dresden effective core potentials was used for all nonperiodic
atom-centered DFT calculations.60−62 The convergence
criteria for these calculations were an energy change of 2.72
× 10−5 eV with a maximum gradient of 5.14 × 10−3 eV Å−1

and a maximum displacement of 5.29 × 10−4 Å. Analytical
frequency calculations were also performed to optimize and
confirm the geometry of the aminopropanol ligand molecular
precursor.
The species present in the reaction solutions have been

examined through comparison of experimental with computed
spectra. Simulated UV−vis spectra were calculated using the
simplified Tamm−Dancoff approximation of time-dependent
DFT (sTDA-DFT), which has been shown to give good
agreement with TD-DFT for the electronic transition energies,
although it is known that intensities calculated using this
method are less reliable.63 The calculation efficiency of sTDA-
DFT has also been increased by employment of the RIJCOSX
approximation of the Coulomb and exchange integrals.
Structures showing sTDA-DFT transitions consistent with
the wavelength of experimentally observed bands were also
calculated using the more demanding TD-DFT with the
RIJCOSX integral approximation. TD-DFT spectra were
examined using the Multiwfn software package, which applies
Gaussian curve broadening.64 Calculated excitations and
orbital compositions were determined using the Mulliken
method.65 Localized orbital centroid analysis was also
undertaken in order to examine the ligand bonding and
oxidation state of the Pd2+ ions in the NP precursor molecule
using the methodology of Vidossich and Lledoś.66 This utilized
the ORCA software package’s implementation of the Pipek−
Mezey population-localisation methodology to derive localized
orbitals from the DFT-calculated electronic structure.67,68 The
gas-phase energy changes of reaction, ΔEr, were calculated
using eq 2.

E E Er products reactants∑ ∑Δ = − (2)

3. RESULTS AND DISCUSSION
The coordination of the capping agent to Pd2+ ions and Pd
NPs was investigated by UV−vis and FT-IR spectroscopies. 3-

Aminopropanol (AP) and 1,3-propanediol (PD) were studied
as model capping agents for the Pd sol. These molecules were
selected because their molecular structures resemble the
repeating units of several polymers commonly used as capping
agents for Pd NPs (e.g., poly vinyl alcohol, poly ethylene
glycol, and poly vinyl pyrrolidone).
The coordination of the capping agent molecules to Pd2+

ions was monitored in real time by UV−vis spectroscopy under
typical synthetic environments for the generation of the Pd sol.
The starting H2PdCl4 salt in solution (the black line in Figures
1−3, which show the observed and calculated spectra) is
characterized by UV−vis bands at 310 and 418 nm. These
bands could be associated to ligand to metal charge-transfer

Figure 1. Experimental UV−vis spectra of H2PdCl4 in solution at pH
3 (black), computed UV−vis spectra of [PdCl4]

2−, [Pd2Cl6]
2−, and

[PdCl3H2O]
−. Inset: Structures of PdCl4

2−, (A); Pd2Cl6
2−, (B); and

[PdCl3(H2O)]
−, (C). Color code: Pd: cyan; Cl: green; O: red; and

H: light gray.

Figure 2. UV−vis spectra of H2PdCl4 in solution (blue) in the
presence of the capping agent PD (green), Pd with PD reduced
(black).
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(CT) and d−d electronic transitions. Typically, bands
originated from d−d transitions are much less intense and
more resolved than CT transitions. On the other hand, the
identification of the Pd species responsible for these spectral
features is no trivial matter. As reported by Elding, the
predominant species found in acidic media are PdCl4

2− and
[PdCl3(H2O)]

−.69 Spectroscopic evidences of the formation of

these species were obtained also using solid PdCl2 as the
precursor by Freund et al., who collected UV−vis spectra of
solutions depending on the pH of the media.70 At a pH of 1.3,
d−d and CT transitions at 280 nm/475 nm for PdCl4

2− and
320 nm/430 nm for [PdCl3(H2O)]−, respectively, were
observed. At a pH of 10, a spectrum showing increased
background absorption was observed along with an increase at
short wavelengths with a feature centered at 270 nm. In
addition, Grogan and Nakamoto reported the formation of
dimeric species. Pd2Cl4(EthO)2

2− which can be described as a
Pd analogue to the Pt salt Zeise’s dimer.71

To identify the contribution of each of these species to the
experimental spectra TD-DFT simulations were carried out to
model UV−vis absorption spectra of PdCl4

2−, [PdCl3(H2O)]
−,

Figure 3. UV−vis spectra of H2PdCl4 in solution (blue), in the
presence of the capping agent AP (green), Pd with AP reduced
(black).

Table 1. Energy Change of Reaction (ΔEr) for the
Formation of Pd2Cl6

2− and [PdCl3H2O]− from PdCl4

products ΔEr/kJ mol−1

Pd2Cl6
2− −252

[PdCl3(H2O)]
− −215

Figure 4. UV−vis spectra of PdCl4
2− sol in the presence of the

capping agent AP (green) and computed TD-DFT spectrum of
PdCl3AP (blue dashed). Inset: (A), PdCl3AP

− lowest energy
geometry; (B), [PdCl3AP]

− with the Pd−N localized bonding orbital
and the centroids for the Pd−N and Pd−Cl bonds. Color code: Pd:
lilac; Cl: green; O: red; N: blue; C: dark gray; H: white; and localized
orbital centroids: translucent yellow.

Table 2. Energy Change of Reaction for the Potential
Products of the Reaction between PdCl4 and AP

potential products ΔEr/kJ mol−1

PdCl2OHAP (cis) −207
PdCl2OHAP (trans) −188
PdCl3AP −305
PdCl2AP2 −295

Figure 5. (A) FT-IR spectra of PD and Pd−PD (top). (B) FT-IR
spectra of AP and Pd−AP (bottom).

Figure 6. Optimization of two different conformations of the AP
adsorbate in the gas phase: (A) all trans, (B) conformation with
internal H-bond.
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and Pd2Cl6
2− species. TD-DFT-computed UV−vis spectra of

PdCl4
2− and Pd2Cl6

2− (green and blue dotted curves in Figure
1, respectively) are in good agreement with the observed
experimental spectrum (the black curve in Figure 1). The
computed data for the chlorine bridged dimer indicate that the
characteristic 420 nm band in the experimental spectra is due
to Cl p−Pd s transition. However, the breadth of this band is

likely due to the contributions of 470 nm transition, indicating
a predominantly Pd d to Pd p excitation involving both
palladium ions of the dimer, and a 388 nm transition observed
in the computed spectrum of PdCl4

2−, attributable to a
predominantly p−p excitation from chlorine to palladium.
Therefore, the experimental band centered at 418 nm could
include all the contributions predicted by the model systems.
The inherently large uncertainty in the relative intensities of

bands obtained using the TD-DFT methodology means that
the position of the peaks is used to analyze the spectra.63 The
broad band present at 425 nm is probably composed of a
combination of peaks caused by contributions of the three
computationally modeled structures. Furthermore, the shoul-
der observed in the experimental spectrum at 310 nm is
consistent with the computed spectrum of the dimer shown in
Figure 1B. The agreement of these computed excitations with
experimental spectra suggests that the sol is composed of an
equi l ibr ium mixture of Pd2Cl6

2− , PdCl4
2− , and

[PdCl3(H2O)]−. The existence of these species is also
supported by the calculation of the energies of reaction for
the formation of Pd2Cl6

2− and [PdCl3(H2O)]
− from PdCl4

2−,
shown in Table 1. These values indicate that the formation of
the dimer and the water-containing complex are both
exothermic processes with the dimer being the more
energetically favorable.
The addition of the capping agent to the Pd2+ solution in PD

led to no substantial changes in the observed spectrum (cyan
dotted line vs blue line in Figure 2). Conversely, upon
reduction with NaBH4 (red line), the band at 418 nm was not
evident while an increased background absorption and an
increase at short wavelengths with a maximum absorption at
285 nm were observed.
The observed increment in the background intensity can be

attributed to the scattering induced by the formation of
colloidal palladium particles and could be responsible for the
masking/disappearance of the band at 418 nm. The blue shift
of the CT band could be correlated to the increase of pH
because of the NaBH4 addition. However, the exact assignment
of the observed band at 285 nm is still undetermined.
According to Klasovsky et al., this peak relates to plasmon
excitation in the colloidal particles.72 However, Boily argued
that it is also compatible with a CT transition of Pd chloro−
hydroxo complexes, PdClx(OH)y

n−, which are stable solution
species under our experimental conditions according to the
hydrolysis equilibrium.73

The effect of adding the AP capping agent to the sol Pd2+

with subsequent metal reduction is shown in Figure 3. As
expected, the initial UV−vis spectrum of Pd(II) (blue line) is
consistent with that of Figure 1, further pointing out the
reproducibility of the experimental procedure. Upon addition
of AP (green line), the broad band centered at 418 nm is

Table 3. Vibrational Frequencies and Assignments of the
FT-IR Bands

vibrational frequency (cm−1) assignment (vibrational mode)

Bands Observed for PD
3361 −OH stretching
2939 and 2924 −CH symm and asymm stretchings
1656 −OH bending
1469 −CH2 bending
1423 C−O stretching
1379 C−H bending

Bands Observed for Pd−PD
3456 −OH stretching
2949 and 2888 −CH symm and asymm stretchings
1642 −OH bending
1473 −CH2 bending
1405 C−O stretching
1362 C−H bending

Bands Observed for AP
3483 and 3442 −NH symm and asymm stretching
3274 −OH stretching
2924 and 2852 −CH symm and asymm stretchings
1605 −OH bending

Bands Observed for Pd−AP
3360 −OH stretching
3229 and 3137 −NH symm and asymm stretching
2933 and 2883 −CH symm and asymm stretching
1586 −OH bending

Table 4. Adsorption Energies of the Different
Configurations of 3-Aminopropan-1-ol on Pd(100) and
Pd(111) Surfaces

configuration
energy of

adsorption/kJ mol−1
N−Pd or O−Pd

distance/Å

Pd(111) surface
nitrogen binding −145 2.15
oxygen binding −95 2.34
Pd(100) surface
nitrogen binding
(O up)

−127 2.16

nitrogen binding
(O down)

−149 2.15

oxygen binding −86 2.32

Figure 7. Adsorption of the AP adsorbate on the Pd(111) surface
with the nitrogen binding to the surface.

Figure 8. Adsorption of the AP adsorbate on the Pd(111) with the
oxygen binding to the surface.
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depleted, and the decrease in intensity of the shoulder at 307
nm is accompanied by a broadening and a shift of the peak to
317 nm. These significant changes are a consequence of the
chlorine ligand substitution by the AP capping agent.
These results are consistent with the computational analysis;

the TD-DFT spectrum of the most favorable product,
[PdCl3AP]

−, (Figure 4, dashed blue line) was also found to
be consistent with the experimental results. The energies of
reaction for the formation of aminopropanol ligand complexes
from PdCl4 are shown in Table 2.
The peak observed at 334 nm in the computational

spectrum shows an excitation from a hybrid Pd d−Cl p orbital
to a molecular orbital composed from the palladium sp and a
hybridization of orbitals in the aminopropanol ligand.
This agreement with the experimental spectrum strongly

suggests that the aminopropanol is directly attached to a Pd2+

species in a structure consistent with the computational
predictions. A similar suggestion was reported by Groppo et
al.32 who compared the diffuse reflectance UV−vis spectra of
bulk Pd(OAc)2 diluted in SiO2 and in pyridine. The bulk
Pd(OAc)2 in silica exhibited a band maximum at 400 nm,
whilst the one diluted in pyridine revealed a peak centered
around 330 nm. As a possible explanation, the authors
suggested that one or two acetate ligands were substituted
using pyridine units.
This interaction between the NH group and the Pd2+ ions

involves a strong interaction between the electron-rich amino
group and the metal ion, which could induce a change in the
actual oxidation state of the metal by partial reduction. For this
reason, centroid analysis of the Pipek−Mezey localised orbitals
was utilized to examine the oxidation state of Pd and the
character of the AP−metal bond, Figure 4B. The localized two-
centered bonding orbitals indicated that the Pd−AP bond was
largely dative in character with the electrons in the bonding
orbital being biased toward the more electronegative nitrogen.
Analysis of the single atom orbitals showed the electronic
configuration of the Pd atom to be consistent with Pd(II),
4s24p64d8 because of the presence of eight centroids centered
upon the Pd atom and the bonding orbital centroids being

biased toward the ligands. Coordination of the ligand does not
therefore involve a redox process.
Upon reduction with NaBH4, the UV−vis spectrum (Figure

3, red line) assumed a very broad profile, where it is difficult to
uniquely identify defined features or any eventual shifts. A
significant increase in the background absorbance was indeed
observed, which, as in the case of PD, was attributed to Willis−
Tyndall scattering which is characteristic for the formation of
particles.
In order to obtain more information on the coordination of

PD and AP to Pd2+ ions, FT-IR spectra of the Pd(II)
complexes were recorded and compared to the FT-IR spectra
of the pure ligand molecules, as shown in Figure 5. In the case
of propane-1,3-diol, Figure 5A, the interaction with Pd2+ ions
seems to provoke negligible perturbations in the molecular
structure of the ligand. Indeed, in addition to an overall
decrease in intensity upon Pd2+ addition, only an erosion of the
broad peak at 3361 cm−1 because of the stretching of −OH
groups, together with a shift of the peak related to the −OH
bending mode from 1656 to 1647 cm−1 are observed, which
indicate that the presence of the Pd2+ ions perturbed these
groups. This spectroscopic feature points out that the
interaction between the metal ions and the propane-1,3-diol
ligand occurs through the −OH groups.
Conversely, more significant changes were observed in the

FT-IR spectrum of AP after interaction with Pd2+ ions (Figure
5B). The peaks observed at 3483 and 3442 cm−1, related to the
symmetric and antisymmetric stretching modes of the −NH
group, are decreased and new bands at 3229 and 3137 cm−1

are produced immediately upon the addition of Pd2+.
Moreover, the −N−H bending mode observed at 1605 cm−1

is shifted to 1586 cm−1. To rationalize these differences, in
particular, to understand if the peaks at 3229 and 3137 cm−1

are the result of a marked shift of the symmetric and
antisymmetric stretching modes of the −NH group or of a
strong perturbation of the −OH group, frequency calculations
were performed in order to simulate FT-IR spectra for the
most stable conformations of the Pd(II)−AP complex.
Different configurations of the adsorbate were first

optimized in the gas phase in order to determine the most
stable configuration. Upon optimization with a plane-wave
basis set and the PBE functional, a straight chain configuration
and an internally hydrogen bonded conformation (with the
hydroxyl oxygen to the amino nitrogen) were found to be the
most favorable, with the latter being the most stable. The H-
bonded conformation was found to have an electronic energy
≈ 0.8 eV lower than that of the other structure, which was also
consistent with results obtained using an atom-centered basis
set. The two configurations are shown in Figure 6.
These results confirmed the former hypothesis coming from

the FT-IR discussion, indicating that the interaction between
the metal ions and the AP ligand occurs through the −NH

Figure 9. Adsorption of the AP adsorbate on Pd(100) with the nitrogen binding to the surface and (A) oxygen pointing downward and (B) oxygen
pointing upward.

Figure 10. Adsorption of the AP adsorbate on Pd(100) with the
oxygen binding to the surface.
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group. The complete assignments of the FT-IR bands are
summarized in Table 3.
For this reason, the interaction of the AP molecule with

metallic Pd surfaces was also investigated. The most stable
configuration of AP was then adsorbed on the two low index
surfaces of palladium metal: Pd(111) and Pd(100). Structures
with AP binding to the surface through the oxygen atom or the
nitrogen atom were investigated; it was found that those in
which both the oxygen and the nitrogen atom bind to the
surface at the same time were unstable because of internal
strain within the AP. In the case with AP adsorbed through the
amine N atom, hydroxyl hydrogen is also attracted toward the

surface. Table 4 and Figures 7−10 summarize the results
obtained.
The conformation with the nitrogen interacting with Pd was

found to be more stable on both Pd(111) and Pd(100)
surfaces as was also seen for the molecular precursor. Because
the Pd(111) surface is more stable than the Pd(100) surface,
the bonding of the adsorbate to the Pd(100) surface is
stronger. As a result, the ligand is preferentially adsorbed on
Pd(100) facets, making the surface less accessible. The reduced
accessibility of Pd(100) facets favors the NP growth on the
Pd(111) facet, resulting in a greater surface area of Pd(100)
facets. This observation confirms the important role of the

Figure 11. IR spectra for the most stable conformations: (A) nitrogen binding of the aminopropanol on the Pd(100) surface (B) nitrogen binding
of the aminopropanol on the Pd(111) surface (C) plots A and B overlaid with the experimentally obtained IR spectrum, (D) oxygen binding on the
Pd(111) and Pd(100) surfaces overlaid with the experimentally obtained IR spectrum.
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capping agent in controlling the growth mechanism and
directing the final particle shape. In addition, the selective
blocking of the Pd(100) surface can have an important impact
on the catalytic performances of Pd NPs.
Frequency calculations on the most stable configurations

were performed and IR spectra were calculated. The resulting
IR spectra for the different conformations are reported in
Figure 11. The correlation between the experimental IR
spectrum and the spectra obtained for the adsorbed
configurations can be taken as a strong indication that the
aminopropanol caps the NP surfaces by bonding through the
amino moiety. This is further supported by the oxygen binding
spectra which indicate that the O−H vibrational modes are
significantly less infrared active than the nitrogen binding O−
H modes in both the experimental and computed nitrogen
binding spectra. While the accuracy of the extended-surface
model for many properties of small NPs is limited, the
assignment of the spectrum to the N-binding species should
not be of concern. The spectra for the nitrogen binding of AP
on the Pd(111) and Pd(100) surfaces are very similar. Given
that the difference between the two surfaces is the number of
surrounding atoms, it can be concluded that the coordination
number of Pd has very little effect on the vibration energies.
Therefore, if the NPs are small to the extent that the corner or
edge sites are significant, the adsorption of AP on these sites is
not likely to have a major effect on the resultant spectra.

4. CONCLUSIONS

The synergistic combination of experimental spectroscopies
and DFT modeling has allowed us to determine the
coordination of small ligand to Pd species during the MNP
formation process. Interesting differences emerged between O-
and N-containing ligands. In particular, it seems that AP reacts
with the molecular precursors by displacing a chloride ion to
form a Pd(II)Cl3AP complex. AP is able to direct the growth
processes during the subsequent reduction by stabilizing the
Pd(100) facets and thus exerting a directing influence upon the
shape of the resultant metal NPs. Although these molecules are
model systems and greater complexity is expected from the
adsorption of macromolecules such as polymers, typically used
as capping agents, these results help in understanding the
phenomena occurring at the interface between the metal
surface and the ligand layer. These data will also provide a
stimulus to a deeper investigation on the role of the capping
agent in metal NP synthesis and in their catalytic behavior.
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